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In the production of US agricultural official statistics, certain inequality and benchmarking
constraints must be satisfied. For example, available administrative data provide an accurate
lower bound for the county-level estimates of planted acres, produced by the U.S. Department
of Agriculture’s (USDA) National Agricultural statistics Services (NASS). In addition, the
county-level estimates within a state need to add to the state-level estimates. A sub-area
hierarchical Bayesian model with inequality constraints to produce county-level estimates
that satisfy these important relationships is discussed, along with associated measures of
uncertainty. This model combines the County Agricultural Production Survey (CAPS) data
with administrative data. Inequality constraints add complexity to fitting the model and
present a computational challenge to a full Bayesian approach. To evaluate the inclusion of
these constraints, the models with and without inequality constraints were compared using
2014 corn planted acres estimates for three states. The performance of the model with
inequality constraints illustrates the improvement of county-level estimates in accuracy and
precision while preserving required relationships.

Key words: Administrative data; bayesian diagnostic; benchmarking; crop acreage estimates;
small area estimation; sub-area models; survey data.

1. Introduction

The National Agricultural statistics Service (NASS), the primary statistical data collection

agency within the U.S. Department of Agriculture (USDA), conducts the County

Agricultural Production Survey (CAPS) annually. CAPS provides county-level estimates

by commodity crop for the following estimands: planted acres, harvested acres, yield and

production. ‘Crop type by county’ represents a planned domain, in the sense that the CAPS

multivariate-probability-proportional-to-size design and sample selection is specifically

intended to support NASS’s county-level data products. However, the number of survey

reports obtained for each domain can vary widely due to issues of survey nonresponse,

genuine differences in planting decisions each year, and in the inherent complexity of

sampling for the breadth of crops of interest nationwide. The current method of producing

q Statistics Sweden

1 National Institute of Statistical Sciences, 1750 K Street, NW, Suite 1100, Washington. D.C., 20006-2306,
U.S.A. Email: lchen@niss.org
2 Worcester Polytechnic Institute and USDA National Agricultural statistics Service, Department of
Mathematical Sciences, Stratton Hall, 100 Institute Road, Worcester, MA 01609. U.S.A. Email: balnan@wpi.edu
3 USDA National Agricultural statistics Service, 1400 Independence Avenue, SW, Washington, D.C. 20250-
2054. Email: nathan.cruze@gmail.com
Acknowledgments: The findings and conclusions in this article are those of the authors and should not be
construed to represent any official USDA, or US Government determination or policy. This research was
supported by the intramural research program of the USDA, NASS. Dr. Nandram’s work was supported by a
grant from the Simons Foundation (#353953, Balgobin Nandram). Dr. Cruze’s contributions to this work were
made during his tenure at USDA, NASS.

Journal of Official Statistics, Vol. 38, No. 3, 2022, pp. 709–732, http://dx.doi.org/10.2478/JOS-2022-0032

http://dx.doi.org/10.2478/JOS-2022-0032


official county-level crop estimates is an expert assessment conducted by NASS’s

Agricultural statistics Board (ASB), which incorporates multiple sources of information.

The information includes CAPS estimates and administrative data whenever it is

available. These county-level estimates are key indicators to farmers, ranchers and a

number of federal and state agencies for decision making. Two USDA agencies, the Farm

Service Agency (FSA) and the Risk Management Agency (RMA), consider the estimates

as part of their processes for distributing farm subsidies and insurance respectively.

Given the importance of the crops county estimates program, NASS engaged a panel of

experts under the National Academies of Sciences, Engineering, and Medicine for

guidance and recommendations on implementing models for integrating multiple sources

of information to provide county-level crop estimates with measures of uncertainty. The

panel’s recommendations were issued in a publicly available report; see National

Academies of Sciences, Engineering, and Medicine NASEM 2017. See also Cruze et al.

(2019) for a recapitulation of some of the panel’s findings. In the traditional process of

setting official statistics, the ASB has relied on standard processes, multiple data sources,

historical performance of these sources, and expert judgment. The ASB analyzes the

survey estimates and integrates them with multiple data sources through a series of

informal composite estimators. (See NASEM 2017, 27–28; Cruze et al. 2019, sec. 2.)

Final estimates are checked for coherence with external administrative totals that are

interpreted as minimum amounts of activity known to have taken place in the county, and

the estimates are rounded in accordance with NASS rounding rules. In a statistical sense,

the ASB results are not reproducible and measures of uncertainty have not been produced

with the traditional data product.

In recent years, small area models have gained increased attention by academic

researchers and government agencies. Small area estimation models can “borrow

strength” from related areas across space and/or time or through auxiliary information to

provide “indirect” but reliable estimates for small areas while also increasing precision.

One challenge of a model-based approach is to provide reliable and coherent estimates that

satisfy important relationships nested among estimates and administrative data. The NASS

county-level official estimates of planted acres should be greater than or equal to the

corresponding available administrative totals that represent known minimum amounts of

planting activity within the county, while also satisfying benchmarking constraints so that

county-level estimates add up to the state-level estimates. In this article, hierarchical

Bayesian models with constraints for small area estimation are discussed and applied to

NASS’s planted area estimates of corn for grain with reference to the 2014 crop year. With

the goal of improving transparency of processes and quantifying the uncertainty associated

with each estimate, NASS implemented the described model-based approach for

estimating county-level planted area totals for thirteen commodity crops nationwide

beginning with the 2020 crop year.

Two major types of small area models, area-level and unit-level models, have been

developed using both frequentist and Bayesian methods. Pfeffermann (2013) and Rao and

Molina (2015) provide a comprehensive overview of the development, methods and

application of small area estimation including various types of area-level and unit-level

models. For continuous responses, the first and most common model is the Fay-Herriot

(FH) model (Fay and Herriot 1979) in small area estimation. It is an area-level model
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based on a “normal-normal-linear” assumption. That is, the direct estimates and area-level

random effects are both assumed to follow normal distribution and a linear regression

function relates the true estimates of interest to covariates. The popular unit-level model,

nested-error regression (NER) model, was proposed by Battese et al. (1988) when data are

available on the individual sampled units. The NER model is also developed under the

normality assumption.

The objective of NASS crops county estimates program is to incorporate different sources

of auxiliary information with survey estimates in the model to provide coherent and reliable

estimates with associated measures of uncertainty. The modeling strategies in both

frequentist and Bayesian methods could operate in similar way. However, Bayesian

approaches are more straightforward for obtaining estimates for any known functions of the

model parameters. In addition, Bayesian methodology is well suited for inequality

constrained problems as it naturally provides a framework that allows complex constraints

via hierarchical models. Recent studies and papers related to the NASS crops county

estimates program have shown that hierarchical Bayesian small area models can incorporate

auxiliary sources of data to improve county-level survey estimation of crop totals with

measures of uncertainty. Battese et al. (1988) introduced the unit-level models for small area

estimation based on nested error linear regression. They combined survey indications with

satellite data. Erciulescu et al. (2019) proposed and implemented a double shrinkage

hierarchical Bayesian sub-area level model to provide the acreage estimates with associated

measures of uncertainty. The paper discussed the results when integrating different data

sources and showed that the county-level model-based acreage estimates decreased the

coefficients of variation relative to the survey ones. Erciulescu et al. (2020) discussed the

challenges of missing data, either survey responses or administrative data, when fitting

hierarchical Bayesian sub-area level model to obtain the crops total estimates for the whole

nation. In these two papers, the state-to-county benchmarking constraint is included.

Increasingly, constrained estimation problems have found application and international

importance in the small area estimation literature. Sen et al. (2018) proposed the method to

conduct inference for a constrained posterior and project samples to the constrained space

through a minimal distance mapping. Instead of placing a prior on the constraint space and

conducting posterior computation, a general formulation of projected posteriors in a

Bayesian decision-theoretic framework is provided. Cruze et al. (2019) identified

constraints among estimates and administrative data as a necessity and allowed for the

possibility of different constraints by small area. Whereas the inequality constraint

problems were not addressed in the aforementioned, NASS-authored literature, Nandram

et al. (2022) addressed the inequality constraint problem and proposed several hierarchical

Bayesian models for NASS crops county-level planted area estimates which have

ultimately been used in practice by NASS effective with the 2020 crop year. They

discussed the methodologies of fitting constrained models and provided a simulation study

to show the performance of all models.

In this article, models with inequality constraints are discussed and implemented to

address the needs and challenges of inequality and benchmarking constraints that NASS

official statistics must satisfy. The models with inequality constraints of Nandram et al.

(2022) are applied to 2014 NASS CAPS data. In Section 2, data sources and some

particular needs of the NASS crops county estimates for total planted acres are presented.

Chen et al.: Bayesian Model with Inequality Constraints 711



In Section 3, hierarchical Bayesian models with inequality constraints are proposed to

produce reliable and coherent county-level estimates and associated measures of

uncertainty. External ratio benchmarking is applied to the county-level estimates so that

they sum to state targets. The results are contrasted with those obtained from

unconstrained models. In Section 4, a case study based on three different states shows the

model-based estimation results and highlights the different performances of the

constrained models and the unconstrained models. Conclusions and future work are

presented in Section 5.

2. Data Sources and Requirements

2.1. Survey Data

Although NASS has been producing official county-level agricultural estimates since

1917, it was in 2011 that NASS completely implemented the large-scale probability

survey, CAPS, to provide county-level official estimates for many principle small grains

and row crops in several states.

The CAPS survey uses a Multivariate Probability Proportional to Size (MPPS) sample

design. The target population for CAPS is all agricultural operators with cropland and/or

storage capacity in any of the eligible states. The NASS list frame includes all known

agricultural establishments. The list frame for CAPS consists of those NASS list frame

records with positive planted acres or storage capacity of the desired commodities in the

previous year (NASEM 2017, 111–117). Sample size is dependent upon the number of

operations in the universe list and the variability of data among operations on a given list.

Sample sizes vary widely among states, and the number of obtained reports will vary by

state, commodity crop, and county, but there is some effort to treat ‘county by crop’ as a

planned domain, and construct samples accordingly.

The list of crops and states in CAPS may change year to year depending on the

requirement of coverage for federally mandated program crops and others. Figure 1 shows

2019 CAPS States

Not in Sample

Row Crops and Small Grains

Row Crops Only

Small Grains Only

Fig. 1. 2019 row crops and small grains CAPS states.
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the 2019 CAPS states. Four different colors indicate the category that each state is in for

the 2019 CAPS. The state in black was for small grains CAPS only. States in dark gray

were for row crops CAPS only. States in light gray were for both small grains and row

crops CAPS. States in white were not included in 2019 CAPS. The row crops CAPS (e.g.,

corn, soybeans) was conducted in 41 states. The small grains CAPS (e.g., barley, oats) was

conducted in 32 states. No other states were included in 2019 CAPS.

As discussed in the introduction, the smallest area at which CAPS produces estimates is

the county. Historically, NASS has also produced estimates for an intermediate domain

called the agricultural statistics district (ASD). Each ASD is comprised of contiguous

counties in the state. Both county-level and ASD level survey estimates and associated

variance estimates are available in CAPS summary. The state-level planted acreage

estimates are published before the completion of data collection for the CAPS. Therefore,

when setting the county level estimates, an external state benchmarking constraint exists.

In the traditional estimation process, the ASB reviews the direct estimates based on CAPS

and relevant auxiliary information to set county estimates that aggregate to those state

targets.

2.2. Auxiliary Data

NASS obtains auxiliary sources of information on crop acres from FSA and RMA. Both

agencies have farmer-reported administrative data on planted acres. While FSA and RMA

programs are popular, they are not compulsory. The activity of some parts of the

population may be absent in either record. The participation rates can vary by crop, by

state, and even by locality within state. For example, the rates of enrollment in FSA

programs for corn are typically higher in so-called corn-belt states, for example Illinois,

than in some other states such as Ohio or Pennsylvania.

As described in NASEM (2017, 20), “FSA defines the common land unit (CLU) as an

individual, contiguous farming parcel, which is the smallest unit of land that has a

permanent, contiguous boundary; common land cover and land management; and a

common owner or common producer association.” FSAmaintains a database of these

digitized, geolocated field boundaries for the entire United States. The size and location of

the fields are known with accuracy. The contents contained within these field boundaries

remain empty until planted acreages are reported by farmers to FSA each year. Farmers

who opt to participate in FSA programs must certify their planting activity by prescribed

due dates. The process of certification typically entails a visit by farmers to an FSA office,

where the farmer is assisted in identifying the fields (CLUs) operated on maps. The farmer

then provides the acreages by type of crop planted in a standard form containing all

associated identifiers with the parcels operated. Deliberate misreporting is dissuaded under

penalty of “loss of program benefits for noncompliance.” The FSA handbook on Acreage

and Compliance Determinations (USDA FSA 2018) details the procedures for

certification, as well as quality assurance and compliance procedures at length.

As overseer of the Federal Crop Insurance Corporation, RMA receives administrative

data on planted acres as farmers enroll in insurance coverage through approved insurance

providers or file claims that are associated with these programs. Farmers may choose not

participate in any crop insurance programs, or they may not insure all commodity crops
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they choose to grow. The participation rates in crop insurance can vary by state and

commodity. For example, in RMA’s own analysis of the 2015 federal crop insurance

portfolio market penetration, defined as the percent of national planted area totals

(estimates produced by NASS) that are also insured acres under these programs, it was

found that 89% of corn acres, 90% of soybean acres, 73% of barley acres, and just 17% of

oats acres were insured (USDA RMA 2017). Accordingly, NASS treats the RMA

administrative data on planted acres as a useful lower bound on the planted acreage.

Non-probability sources like the FSA and RMA programs administrative data are not

free of nonsampling errors. Foremost, neither of these collections represents a registry of

the activity of all population units, and therefore, totals obtained at any geographic level

from either source may subject to some degree of under coverage or provide

underestimates of population totals. Good (2014) discussed this in the context of

comparing national totals from NASS and from FSA. The aforementioned RMA analysis

pointed to likely undercoverage nationwide. As a department, USDA, takes steps to

mitigate other types of nonsampling error that could affect the quality of the reported data,

through minimizing opportunities or incentives to misreport, through ongoing quality

assurance procedures, and in the case of FSA, through geospatially resolving the collected

data to the county, and more specifically, to the field, where the crop was planted. With

these combinations of factors and the need to produce estimates that are coherent given

these other USDA data sources, NASS has interpreted the administrative data as

informative lower bounds in the construction of official county estimates produced under

the traditional ASB process and seeks to retain that feature in any candidate model for

planted area. While there can be significant overlap of FSA and RMA data, not all

operations will participate in both. Because NASS treats both FSA and RMA data as the

lower bounds of the county-level planted acreage estimates, the definition of the lower

bound in the constrained models is the maximum of both sources of administrative data.

That is, where FSA and RMA acreages may differ, the larger is taken as a firm lower

bound NASS estimates should respect.

2.3. Important Relationships for Planted Acres

In the production of the official statistics for total acres reported by NASS, benchmarking

and inequality constraints should be satisfied. NASS sometimes describes its procedures

as ‘top-down’, meaning that national and state estimates are published before the sub-state

ASD and county estimates, even while additional CAPS data collection may be ongoing

(NASEM 2017, 24). In practical terms, it means that official county-level estimates will

have an external target for benchmarking county totals to the published state total.

Additionally, NASS’s official estimates of planted acres should cover corresponding

available administrative data: FSA and RMA planted acreage data within any given

geographic boundary, such as the US, a state, and county. The differences between NASS

official statistics and FSA administrative data of total planted acreage for corn, soybeans,

barley and oats at US level from 2012 to 2019 are displayed in Figure 2. Each plot shows

that the differences between NASS official estimates and FSA data are all positive at the

US level. However, the county-level survey estimates of the planted acreage do not always

satisfy the constraints.
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Figure 3 indicates that the points in the plot of the survey estimates in log10 scale versus

the FSA data in log10 scale are scattered around the 45 degree line. Some of the survey

estimates are one or two standard deviations below the corresponding FSA or RMA data.

This introduces difficulties for models without constraints to preserve the relationships.

However, inequality constraints must be incorporated into the model so that all known

relationships are satisfied at all levels before NASS can rely on model-based estimates as

the foundation for the final official estimates.

3. Models

Bayesian area-level and sub-area level models are popular in small area estimation. They

are excellent reproducible tools that combine survey data and auxiliary data to produce

reliable estimates for areas. In this paper, models with constraints are considered based on

Nandram et al. (2022). For comparison, the model without constraints are from Erciulescu

et al. (2020).

Two model assumptions are made for both constrained and unconstrained model. First, it

is assumed that the sampling variances are known and valid estimates from the survey

summary in both area-level and subarea level sampling models. The modeling strategies are

developed to deal with the crop county estimates including different commodities in all

states covered by CAPS. Whereas Erciulescu et al. (2019) developed and compared models

for direct estimates scaled by the sample sizes with a hierarchy for sampling variances, here
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Fig. 2. The differences of US-level planted acreage estimates of several commodities between NASS and FSA.
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we adopted the models for the direct estimates described in Erciulescu et al. (2020). Adding

an extra model assumption for the sampling variance is not feasible, and so we assume that

the sampling variances are fixed to avoid computational difficulties. Second, assuming

normality of direct estimates is a practical method with good performance that provides

estimates for counties with sample sizes as small as one and zero. This is impossible under

the model specification in Erciulescu et al. (2019) because the sample sizes are

denominators in the models. On the other hand, in our case, each county has its own unique

inequality constraint and the sum needs to satisfy another benchmarking constraint.

In this section, models, with and without constraints, are presented and applied in a case

study of 2014 corn data. They are illustrated for one state and one commodity, that is, all

parameters are state and commodity-specific. The area-level model without inequality

constraints was first introduced by Fay and Herriot (1979), where an area represents a

county. The sub-area level models without inequality constraints were discussed by Fuller

and Goyeneche (1998) and Torabi and Rao (2014) as an extension of FH model. Nandram

et al. (2022) propose and discuss both area and sub-area level models to address the

inequality constraints into the models.

3.1. Models Without Constraints

Erciulescu et al. (2020) discussed and applied a hierarchical Bayesian sub-area model to

estimate the number of planted and harvested acres. In their paper, the state benchmarking
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Fig. 3. The county-level planted acreage estimates (log10 scale) of several commodities for CAPS and FSA in

all eligible counties.
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constraint is handled by ratio benchmarking in the output analysis, but inequality

constraints are not addressed either in the model or in the output analysis. In this article,

this model without inequality constraints is referred to the unconstrained model and

several comparisons between this type of model and models with inequality constraints

(constrained models) will be presented in Section 4.

In the sub-area level models, an area is an ASD and a subarea is a county. Let

i ¼ 1,: : :,m be an index for m ASDs in the state and j ¼ 1; : : :; ni be an index for the

county in the ith ASD. The survey estimate of planted acreage in county j in district i is

denoted by ûij and the associated survey variance is ŝ2
ij. The total number of counties in a

state is
Pm

i¼1ni. The auxiliary data used in the models are xij, including an intercept.

The sub-area hierarchical Bayesian model is

ûijjuij; ŝ
2
ij ,ind

Nðuij; ŝ
2
ijÞ; i ¼ 1; : : : ;m;

uijjb;s
2
m ,ind

Nðx0ijbþ vi;s
2
uÞ; j ¼ 1; : : : ; ni; ð1Þ

vjjs
2
v ,ind

Nð0;s2
vÞ;

where ðb;s2
m;s

2
vÞ is a set of nuisance parameters. The county-level FSA and RMA planted

acreage data are highly correlated. To avoid the multicollinearity problem, we choose to

use the maximum of these two data sources. Thus, the vector of regressors for the county j

with in the district i consists of xij ¼ ð1;maxðFSAij;RMAijÞÞ
0:

Note that the above sub-area level model without area level (ASD) effects, vi; reduces to

the basic area-level FH model without constraints, that is,

ûijjuij; ŝ
2
ij ,ind

Nðuij; ŝ
2
ijÞ; i ¼ 1; : : : ;m; ð2Þ

uijjb;s
2
m ,ind

Nðx 0ijb;s
2
mÞ; j ¼ 1; : : : ; ni:

A diffuse prior is adopted to the coefficients b, that is, a bivariate normal prior

distribution with fixed and known mean and variance and covariance matrix b , MN(b̂,

1000
P̂

b̂). Here, b̂ are the least squares estimates of b obtained from fitting a simple

linear regression model of the county-level survey estimates on the auxiliary data xij and
P̂

b̂
is the estimated covariance matrix of b̂. The proper diffused prior on b is used

because it provides a degree of computational stability. The prior distributions for s2
m and

s2
v are Uniform (0,1010) and Uniform (0,1010). The discussion in Browne and Draper

(2006) motivates the use of an uniform prior distribution for the random-effect variance

components.

3.2. Models With Constraints

Because of the advantage of shrinkage estimation in small area models without constraints

discussed in Subsection 3.1, smaller survey estimates are likely to be pulled upwards. This

will help to meet the bounds, but it does not solve the problem. As discussed in Subsection

2.2, the county-level estimates must be larger than the corresponding FSA and RMA

Chen et al.: Bayesian Model with Inequality Constraints 717



planted acres data. If the model does not incorporate inequality constraints, the final

estimates do not necessarily cover the lower bounds in all cases. The inequality constraints

need to be incorporated in the models. In this section, the hierarchical Bayesian models

with inequality constraints by Nandram et al. (2022) are discussed.

First, inequality constraints between the true parameter uij of interest and administrative

values need to be included in the model, that is,

uij $ cij; i ¼ 1; : : :;m; j ¼ 1; : : :; ni; ð3Þ

where the cij is fixed known quantity.

In our application on planted acres, cij ¼ max(FSAij, RMAij) is the maximum value

between FSA and RMA corresponding values in the same county. Notice that in Figure 3,

some of the survey estimates are one or two standard deviations below their corresponding

cij, thereby creating some difficulties for the model estimates to do the same. The

benchmarking constraint creates an additional challenge because the state target may be

only slightly larger than the state total from administrative data, c ¼
Pm

i¼1

Pni

j¼1cij. This

may be a tight condition, as discussed in Cruze et al. (2019).

In addition, under NASS’s top-down approach, the benchmarking constraint needs to be

considered as well. In this article, we fit Bayesian models using Markov chain Monte Carlo

(MCMC) simulation. After model fitting, a series of MCMC samples are obtained to

construct the posterior summaries of interest. We perform ratio benchmarking in each

iteration of the MCMC samples. Erciulescu et al. (2020) discussed and applied the ratio

benchmarking adjustment method at the (MCMC) iteration level in the output analysis to

address the county-state benchmarking constraint. It provides a suitable benchmarking

adjustment to ensure consistency of county-level estimates with the state target efficiently.

Let ~u
B

ij be the adjusted model estimate for county j in district i. Let uij;k denote the draw

of uij and uB
ij;k denote the adjusted (after benchmarking) draw, where k denotes the draw

from the posterior distribution and k ¼ 1; : : :;K: Let a be the benchmarking state target.

The arithmetic mean of the MCMC samples is used to construct the point estimates of

interest. After the ratio benchmarking adjustment,

~u
B

ij ¼
1

K

XK

k¼1

uB
ij;k ¼

1

K

XK

k¼1

rkuij;k; ð4Þ

where rk is the adjusted ratio at iterate level and the ratio rk is

rk ¼ a £
Xm

i¼1

Xni

j¼1

uij;k

 !21

: ð5Þ

Therefore, the following relationship holds for state benchmarking constraint,

Xm

i¼1

Xni

j¼1

uB
ij ¼ a: ð6Þ

However, we need to make sure the adjusted final estimate ~u
B

ij can satisfy inequality

constraint as well. Given Equation (3), the inequality constraint can be preserved for uij;k in

each kth iteration. If rk $ 1 for each k, the following relationship follows from combining
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Equations (3) and (4):

~u
B
ij ¼

1

K

XK

k¼1

rkuij;k $
1

K

XK

k¼1

uij;k $
1

K

XK

k¼1

cij $ cij: ð7Þ

Therefore, when rk $ 1
�Pm

i¼1

Pni

j¼1uij;k # a
�

for each iteration k, it follows that that all

model estimates are raked up, and no individual county’s inequality constraint will be

violated.

Based on the discussion above, uij should be drawn subject to the constraints

uij $ cij; i ¼ 1; : : : ;m; j ¼ 1; : : :; ni;
Xm

i¼1

Xni

j¼1

uij # a ð8Þ

to address both inequality and benchmarking constraints in the models.

According to the constraints Equation (8),

Xm

i¼1

Xni

j¼1

cij #
Xm

i¼1

Xni

j¼1

uij # a: ð9Þ

Therefore, the support of uij given
~
uðijÞ is

T ¼ uij : max cij;

Xm

i¼1

Xni

j¼1

cij 2
Xm

i 0¼1;i 0–i

Xni

j 0¼1;j 0–j

ui 0j 0

 !(

# uij # a 2
Xm

i 0¼1;i 0–i

Xni

j 0¼1;j 0–j

ui 0j 0

)

;

ð10Þ

where the lower bound cij is known and fixed and i ¼ 1; : : :;m; j ¼ l; : : :; ni:

To preserve the relationships, the constraint Equation (10) is added to the FH model and

the sub-area model in the priors to get the joint posterior density of uij; i ¼ l; : : :;m;

j ¼ 1; : : :; ni: This problem falls under the general heading of constraint problems in

statistics (Nandram et al. 1997).

Therefore, the sub-area hierarchical Bayesian model with constraints is proposed as

ûijjuij; ŝ
2
ij ,ind

Nðuij; ŝ
2
ijÞ; j ¼ 1; : : : ; ni;

uijjb;s
2
m ,ind

Nðx 0ijbþ vi;s
2
mÞ; uij [ T ; ð11Þ

vijs
2
v ,ind

Nð0;s2
vÞ; i ¼ 1; : : : ;m;

where T denotes the support in Equation (10) of uij such that both the benchmarking

constraint and inequality constraints are satisfied. Here, (b,s2
m,s2

v) is a set of nuisance

parameters and xij ¼ (1, xij1,: : :, xijp) is the vector of covariates and the intercept. In the

constrained model, the vector of regressors for the county j with in the district i are the

same with those in the unconstrained model, that is, xij ¼ (l, max(FSAij, RMAij))
0. Note

that the above sub-area level model without sub-area level (ASD) effects, vi, reduces to the

area-level FH model with constraints, that is,

ûijjuij; ŝ
2
ij ,ind

Nðuij; ŝ
2
ijÞ; j ¼ 1; : : : ; ni; ð12Þ
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uijjb;s
2
m ,ind

Nðx 0ijb;s
2
mÞ; uij [ T :

A diffuse prior is adopted to the coefficients b, the same as the prior mentioned in

Subsection 3.1. The prior distributions in subarea-level model for s2
m and s2

v are Uniform

(0, l010) and Uniform (0, l010), respectively and the prior distribution in area level model

for s2
m is Uniform (0, l010). Notice that without benchmarking constraint based on ratio

benchmarking, the uij s are not correlated a priori, but they are correlated a posteriori

because of the common parameters over areas. With benchmarking constraint, they are

correlated because they must add up to the state target a.

The methodology for creating the state targets guarantees that a state target a is greater

than or equal to the administrative state total c. That is, a ¼
Pm

i¼1

Pni

j¼1
~u
B

ij $
Pm

i¼1

Pni

j¼1cij ¼ c: Therefore, there are feasible solutions to the inequality constraint

problem in Equation (8), and a feasible solution clearly depends on the state target and the

FSA and RMA data. As discussed in Subsection 2.2, most of the survey estimates are

within two standard deviations of the bounds, but many of the smaller ones are much

further below the bounds. If the model does not incorporate inequality constraints, the final

model estimates do not necessarily cover the lower bounds in all cases. Therefore,

inequality constraints need to be incorporated in the models to provide not only reliable

but also coherent estimates.

4. Case Study

Three states, Illinois (IL), Ohio (OH), and Pennsylvania (PA), are considered in the case

study. The four models discussed in Section 3 are compared: the sub-area level model with

inequality constraint, the area-level model with inequality constraint, the sub-area level

model without inequality constraint and the area-level model without inequality

constraint. All models are fit using the administrative data sources described in Subsection

2.2.

All models produce 2014 CAPS estimates of planted acres for corn in IL, OH, and PA.

FSA and RMA administrative data in IL usually have very high coverage rates of the

planted acres for corn in each county. But in some specific counties in OH, both sets of

administrative data have relatively low coverage rates for planted acres. In PA,

administrative data in many counties have low coverage rates for planted acreage

estimates. Therefore, these three states have different features. The model performance is

evaluated for all different scenarios.

As mentioned in Subsection 2.2, the county-level survey estimates did not automatically

cover all FSA and RMA administrative data. The relationship between survey estimates

and the corresponding lower bounds based on administrative data (the maximum of FSA

and RMA data) is displayed in Figure 4. The plotted pairs of survey estimates and

administrative data are scattered around the 45 degree line. Around 31% of the county-

level survey estimates cover FSA and RMA for IL. About 56% of the survey estimates

cover FSA and RMA for OH. About 83% of the survey estimates cover FSA and RMA

for PA.

In Subsection 4.1, a summary of the model fitting process is provided. Subsection 4.2

includes the internal checks for all four models. Several diagnostic tools are explored to
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check the adequacy of the models. External checks between model estimates, survey

estimates and official statistics from NASS are presented for all models in Subsection 4.3.

4.1. Model Estimation

All four models are applied to all counties with positive data in one state for which

ûij; ŝ
2
ij; xij

� �
are available. In IL, there are 102 counties and 9 ASDs in the CAPS samples

for planted acreage. In OH, there are 88 counties and 9 ASDs. In PA, there are 65 counties

and 9 ASDs.

MCMC simulation method is used to fit all four hierarchical Bayesian models using R

and JAGS (Plummer 2003). In each model, three chains are run for our MCMC simulation.

Each chain contains 50,000 Monte Carlo samples, and the first 15,000 iterates are

discarded as a burn-in to improve the mixing of each chain. After that point, 35,000 further

iterations were produced for each of the three chains. In order to eliminate the correlations

among neighboring iterations, those iterations are thinned by taking a systematic sample of

1 in every 35 samples. Finally 1,000 MCMC samples in each chain are obtained for

constructing the posterior distributions of all the parameters, the nuisance parameters and

the parameters for the planted acres.

Markov Chain Monte Carlo (MCMC) methods have been used to approximate the

posterior marginals in Bayesian Hierarchical models and are computationally intensive if

models are complicated and intractable. Computation time is one key factor when

candidate models are evaluated for production especially for crops county estimates

project involving multiple commodities for all related counties in US. As mentioned

before, all models are fit by MCMC simulation using RJAGS. The computation time in

reaching convergence for the different parameters in the unconstrained models is one to

two minutes for each state and each commodity depends on the sizes of the data. But the

computational time for the constrained models are five to six minutes since two inequality

constraints nested with parameters are incorporated in the models. Their posterior

distributions are more complicated than the unconstrained models, involving truncated

normal distributions. Therefore, it takes more times to fit the constrained models than

unconstrained ones. However, the computation time to produce county-level estimates

with associated uncertainties is acceptable in current production procedure.

Convergence diagnostics are conducted. The convergence is monitored using trace

plots, the multiple potential scale reduction factors (R̂ close to 1) and the Geweke test of
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Fig. 4. The county-level planted acreage estimates of corn for CAPS and the lower bounds in IL, OH, and PA.
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stationarity for each chain (Gelman and Rubin 1992; Geweke 1992). Also, once the

simulated chains have mixed, the effective number of independent simulation draws to

monitor simulation accuracy is determined. Effective sample sizes and the R̂ are shown in

Tables 1 and 2, resulting in good convergence for all four models: area and sub-area

models with inequality constraint (C) and without constraint (NC) for IL, OH, and PA. The

values of R̂ of most coefficient parameters are close to 1. The effective sample sizes of

coefficient parameters in sub-area level models are 3,000 and those in area-level models

are around 2,000 for IL. The effective sample sizes vary from 1,100 to 3,000 for OH. The

effective sample sizes vary from 1,900 to 3,000 for PA.

4.2. Internal Check

Several diagnostic tools are available to check the adequacy of all four models to the

observed data considered in this article. First, the fit of the models to the data is assessed

using Bayesian predictive checks. If a model fit is adequate to all observations û, replicated

values urep that generated data from the model would be similar to observations. We

Table 1. Sub-area level models: Effective sample sizes (ESS) and R̂ for 2014 IL, OH and PA corn.

State Parameters ESS R̂

C Sub-area NC Sub-area C Sub-area NC Sub-area

b0 3000 3000 1.001 1.001
IL b1 3000 3000 1.001 1.002

s2
m 1900 2100 1.004 1.012

s2
v 3000 3000 1.001 1.003

b0 1800 2800 1.006 1.006
OH b1 3000 1400 1.006 1.002

s2
m 2000 1200 1.007 1.007

s2
v 2300 1800 1.003 1.003

b0 2400 2800 1.004 1.003
PA b1 3000 3000 1.001 1.001

s2
m 1900 2000 1.019 1.007

s2
v 2500 3000 1.011 1.009

Table 2. Area level models: Effective sample sizes (ESS) and R̂ for 2014 IL, OH, and PA corn.

State Parameters ESS R̂

C Area NC Area C Area NC Area

b0 1500 1700 1.010 1.002
IL b1 2000 1900 1.002 1.002

s2
m 2100 2500 1.008 1.004

b0 2300 3000 1.007 1.001
OH b1 1700 1100 1.009 1.017

s2
m 1900 1200 1.008 1.007

b0 2400 2400 1.009 1.011
PA b1 2600 2700 1.011 1.005

s2
m 2800 3000 1.001 1.003
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calculate the Bayesian predictive p-value (BPP) to measure the adequacy of all models to

the data from Rubin (1984), Meng (1994), and Gelman et al. (2013). The Bayesian

posterior predictive p-value (BPP) is defined as

p ¼ Pr T u rep;V
� �

. T û;V
� �

jû
� �

; ð13Þ

where discrepancy function, Tðu;VÞ; is selected as Tðu;VÞ ¼
Pm

i¼1

Pni

j¼1

uij2EðuijjûÞ

� �2

Var uijjVð Þ
and

V are the nuisance parameters in each model. The p-value is the probability of the sum of

square residuals based on replicated estimates larger than the one from observed data. If

the value is extreme, smaller than 0.05 or larger than 0.95, it indicates a discrepancy

between the model and the data, meaning the model is not adequate. The BPP for each

model is presented in Table 3. For IL, the BPPs in the area-level and subarea level models

with constraints are 0.663 and 0.504, respectively, which are not close to 0 or 1. The

models without constraints have high BPP, 0.903 and 0.947, respectively. Those BPP are

close to 0.95. Similar results show for OH in Table 5. Noticed that the sub-area level model

without constraints for OH is 0.967, which is a borderline case. It indicated that the model

is not adequate when comparing with survey estimates. The model’s predictions are

“biased” to be too high. For PA, all BPPs are smaller than 0.5 but they are not close to 0.

However, models cannot be ranked based on BPPs.

Another goodness-of-fit measure for models is the deviance information criterion (DIC)

(Spiegelhalter et al. 2002) shown in Table 3. It is not well suited to make the model

selection based on DICs between constrained and unconstrained models. In particular, we

consider the following type of comparison based on DIC only: between sub-area models

and area models within either constrained models and unconstrained models. Table 3

shows the DICs from sub-area models are slightly smaller than those in area-level models.

They indicate that the sub-area level models are better than the area-level models because

sub-area models can borrow information from both area and sub-area levels.

Therefore, based on DIC diagnostics, sub-area level models are better than the area level

models. To check model performance between sub-area level constrained and

unconstrained models, external comparisons are discussed in the next section.

4.3. External Check

Internal checks show that sub-area level models have slightly smaller DICs than area-level

models. Comparisons between area level and sub-area level unconstrained models and

Table 3. DICs and BPPs for constrained and unconstrained models.

Type Model DIC BPP

C NC C NC

IL Sub-area 2334.6 2285.3 0.504 0.947
Area 2335.7 2285.2 0.633 0.903

OH Sub-area 1881.1 1766.7 0.331 0.967
Area 1884.7 1776.4 0.248 0.908

PA Sub-area 1613.8 1313.7 0.551 0.178
Area 1618.4 1281.1 0.151 0.111
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comparisons between area level and sub-area level constrained models are fine. However,

the internal checks considered are not appropriate in terms of the model comparison of

both sub-area level constrained and unconstrained models. Therefore, in this section,

several external checks are conducted. In the guidance provided in NASEM (2017), the

recommendation related the external comparisons is to use published estimates in

assessing the quality and reasonableness of the model-based county-level estimates,

especially at the research stage. In addition, before NASS can adopt a model-based

approach to producing crops county estimates, the model must incorporate all known

relationships. The inequality constraints check is another important factor in our

evaluation.

First, the inequality check between the final model estimates of planted acres and the

corresponding FSA and RMA administrative data is conducted for each model. Figure 5

shows the results in the unconstrained models for IL and OH. Counties in white indicate

that the corresponding model estimates are smaller than FSA and RMA data. Counties in

gray mean that their estimates are larger than the maximum of both FSA and RMA

administrative data. In unconstrained model, 34 out of 102 counties in IL, 8 out of 88

counties in OH, and 3 out of 65 counties in PA do not satisfy with the constraints.

However, based on the constrained model setting, all counties in both states satisfy the

constraints after ratio benchmarking.

For the unconstrained model, the coverage rate on administrative data depends on the

relationship between survey estimates and the administrative data. In PA, when many

administrative data are smaller than survey estimates, only a few model-based estimates of

planted acres are smaller than the administrative data.

Figure 6 shows comparison of constrained model estimates (denoted C) and

unconstrained model estimates (denoted NC) relative to the FSA administrative totals in

each county. In each panel, counties have been sorted on the horizontal axis in ascending

order by number of CAPS survey reports collected and assigned a corresponding index

value, for example, ranging from 1 to 102 for all counties in IL. Within each state, all

modeled county estimates are benchmarked to the same fixed state total. On the vertical

axis, values greater than one indicate that the estimated county acreage covers the

corresponding FSA administrative data. Eliciting an acceptable tolerance below the FSA

or RMA acreages has been difficult; at 640 acres (approximately 259 hectares) to the

square mile, even some of the apparently modest differences below one become points of

IL OH

PA

PL >= FSA & RMA FALSE TRUE

Fig. 5. Inequality check for unconstrained models for IL, OH, and PA.
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concern as the unconstrained model estimate begins to disagree with minimum amounts of

planting activity on record in FSA’s accurately geolocated database. The rightmost panel

for PA points to some of the differences by state and commodity in NASS’s estimation

program. It speaks to the importance of quantifying the uncertainty of estimates when

official statistics based on a blend of data may have properties more like administrative

data in some scenarios, and more like survey or unconstrained model estimates in others.

In addition, both model-based estimates and survey estimates are compared to the

published estimates. Let ~u
NC

MERB be the unconstrained (NC) model estimates after ratio

benchmarking and ~u
C

MERB be the constrained (C) model estimates after ratio

benchmarking. Let ~u
DE

MERB be the survey (DE) estimates. The absolute relative differences

between those estimates and published estimates,

ARD ¼
j ~u

t

MERB 2 Publishedj

Published
; ð14Þ

are calculated and presented, where t ¼ NC, C, DE. A small ARD is one key check on the

performance of model-based point estimates. It is true that ARD will not be useful in the

current year because the published estimates will not be available. However, it is a good

check in a previous year when the official estimates are already decided and published.

Note that we are using 2014 data and corresponding official estimates were published.

Indeed, ARD is a check on models for future applications in the research stage

recommended by NASEM (2017).

The posterior coefficients of variation (CV),

CV ¼
PSDt

~u
t

MERB

; ð15Þ

are calculated, where t ¼ NC, C, DE and the posterior standard deviation (PSD) is the

corresponding posterior standard deviation of ~u
t

MERB, t ¼ NC, C, DE from different

models and survey (see Table 4 and 5).

The sample sizes for planted acres in CAPS varies with county in each state. Many

counties in these three states have relatively large sample sizes. However, many counties

have small sample sizes as well. Small area models tend to improve the accuracy of

estimates comparing to the accuracy of survey estimates, especially in areas with small
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acreage for IL, OH, and PA.
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sample sizes. In order to examine the effect of sample size among our models, we split

counties of IL, OH, and PA, respectively, into three groups according to their number of

reports in CAPS: small sizes (less than 30); median sizes (between 30 and 60); large sizes

(larger than 60). All statistics are shown in Table 4, 5, and 6 as well.

Among all counties in IL, the median ARD value between survey estimates and

published estimates in IL is 14.914%. Substantial improvement can be noticed from both

the constrained model and the unconstrained model. Again compared to published

estimates, the median ARD value based on the constrained model is 194%, less than the

median ARD value based on the unconstrained model, 0.948%. Moreover, the range of

ARD values from the constrained model (0.003%, 34.908%) are much narrower than the

range based on survey estimates (0.259%, 82.973%) and also less than those from the

Table 4. 2014 IL corn planted acres: comparisons of ARDs and CVs among survey, sub-area unconstrained

model and constrained model.

Sample size Statistics ARD (%) CV (%)

DE NC C DE NC C

Overall Min 0.259 0.007 0.003 10.501 1.899 0.144
Median 14.914 0.948 0.194 19.210 5.199 0.272

Max 82.973 51.346 34.908 92.283 125.905 12.705
[0,30) Min 0.259 0.622 0.273 25.315 20.544 1.466

Median 16.585 13.530 0.978 42.421 34.905 2.187
Max 66.174 51.346 34.908 92.283 125.905 12.705

[30,60) Min 0.575 0.007 0.007 10.501 2.459 0.185
Median 9.721 1.204 0.176 19.885 5.812 0.278

Max 39.620 17.036 1.940 33.961 21.985 2.336
$ 60 Min 7.474 0.096 0.003 9.108 1.899 0.144

Median 33.990 0.646 0.196 15.731 3.151 0.214
Max 82.973 2.032 1.199 53.570 5.522 1.740

Table 5. 2014 OH corn planted acres: comparisons of ARDs and CVs among survey, sub-area unconstrained

model and constrained model.

Sample size Statistics ARD (%) CV (%)

DE NC C DE NC C

Overall Min 0.002 0.103 0.093 8.754 1.043 0.473
Median 12.942 2.394 2.575 22.292 3.670 0.797

Max 114.123 95.376 49.858 100.000 104.411 89.816
[0,30) Min 0.002 0.103 0.671 17.169 3.266 0.533

Median 24.898 9.791 4.650 35.280 22.292 5.044
Max 95.687 95.376 49.858 100.000 104.411 89.816

[30,60) Min 1.574 0.136 0.093 10.224 1.206 0.473
Median 12.699 2.266 2.191 19.468 2.546 0.660

Max 114.123 10.968 14.864 33.072 29.994 10.548
$ 60 Min 6.172 0.322 0.216 8.755 1.043 0.499

Median 11.982 0.876 1.241 14.699 1.507 0.765
Max 18.915 5.001 6.785 19.384 5.231 4.136
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unconstrained model (0.007%, 51.349%). Therefore, for IL, the sub-area level model with

constraints performs the best among the unconstrained model and survey estimates as

measured by the ARD. In addition, Table 4 shows the ARD values based on the sample

sizes of counties in IL. The ranges of ARD values based on both models are large for

counties with small number of reports. ARD values from the constrained model are within

2% for median size counties but those from the unconstrained model are from 0.007% to

17.036 %. For large counties, the relative differences from all models are the smallest

among all three types of counties. They are within 2% difference for constrained models

and 3% from unconstrained model. As expected, all estimates are closer to the published

estimates with increasing sample size. Overall, the comparisons of ARD values show that

the constrained model increases the accuracy of the estimates significantly.

The CVs of the IL model and survey estimates are shown in Table 4. The sub-area level

model can borrow information from both covariates and other counties in the district (sub-

area) level. Therefore, the posterior CVs would have a greater reduction compared with

the CVs of the survey estimates. The median CVs among all counties in IL are in

decreasing order: survey, the unconstrained model and the constrained model. In the

unconstrained model, the CVs of small size counties are the largest (20.544%, 125.905%).

The maximum estimated CVs exceeds the maximum of CVs from survey. The CVs of

the constrained model are much smaller than those from survey and the unconstrained

model. As expected, the CVs are smaller when sample sizes increase. In the model with

inequality constraints, the maximum CVs is in the small size counties as well.

Table 5 shows the comparisons for OH. The median of ARDs between survey estimates

and published estimates is 12.942%. Substantial improvement can also be noticed from

both constrained and unconstrained models. The median ARD value between model-based

estimates and the published estimates is around 2%. The smallest median of the relative

differences is 2.394% in the unconstrained model. However, the range of ARD values

from the constrained model is (0.093%, 49.858%), which is narrower than the one from the

unconstrained model, (0.103%, 95.376%). Notice that the ranges of ARDs in OH are

Table 6. 2014 PA corn planted acres: comparisons of ARDs and CVs among survey, sub-area unconstrained

model and constrained model.

Sample size Statistics ARD (%) CV (%)

DE NC C DE NC C

Overall Min 0.128 0 0 9.685 2.874 2.874
Median 12.537 12.272 11.198 22.644 14.237 11.584

Max 73.300 733.127 33.318 70.941 75.132 44.113
[0,30) Min 0.128 0 0 19.421 9.057 2.874

Median 20.000 16.343 14.284 32.611 31.736 14.532
Max 73.300 733.127 33.318 70.941 75.132 44.113

[30,60) Min 2.520 1.71 0 14.165 6.778 2.795
Median 11.200 15.943 10.910 21.143 12.924 11.484

Max 54.600 41.624 19.247 38.203 27.496 21.941
$ 60 Min 0.303 7.510 1.513 9.685 4.521 3.294

Median 10.654 15.933 9.343 12.943 8.943 8.223
Max 27.382 41.015 26.477 19.257 20.140 17.858
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larger than those in IL. The administrative data for OH are not stronger comparing with

those in IL. In several counties, FSA and RMA administrative data have the

undercoverage issue.

To examine the effect of sample sizes, OH is split into three groups and all statistics are

presented in Table 5. The ranges of the ARD values based on models and the survey

are relatively large in small size counties. Both model estimates are much closer to the

published estimates. The estimates of the constrained model in small size counties

are closest to the published estimates based on the range of the ARD values. However, the

median ARD value from the constrained model is 1.241% for large size counties, which

is larger than the one from the unconstrained model, 0.876%. The maximum ARD value is

similar as well.

For the median size counties, constrained model tends to provide larger estimates

compared with those from unconstrained model.

The CVs are compared among models and the survey estimates for OH as well. Similar

to IL, the posterior CVs based on the models are small compared with the CVs from

survey. The median CV in the unconstrained model is 3.67%, larger than the one in the

constrained model. The maximum CV in the unconstrained model is the highest among

models and survey. As expected, the CVs are smaller when sample sizes increase. The

maximum of CVs is in small size counties as well. The CVs based on constrained model

are much smaller than those of constrained model and survey. For OH, the range of CVs in

model with inequality constraints are wider than those for IL.

Table 6 shows the comparisons for PA. The median of ARDs between survey estimates

and published estimates is 12.272%. Slight improvement can be noticed from both

constrained and unconstrained models in terms of median ARD value but big improvement

from the constrained model when comparing with the maximum of ARD value. The median

ARD value between model-based estimates and the published estimates is around 12.218%

and 11.198% for unconstrained and constrained model respectively. However, the range of

ARD values from the unconstrained model is (0%, 733.127%). That biggest ARD value,

733.127%, is in county with small sample sizes, far from the published estimate comparing

with survey. the range of ARD values from the unconstrained model is (0%, 33.318%),

which is narrower than both from survey and unconstrained model. Notice that the median

of ARDs in PA is larger than those in IL and OH.

The administrative data for PA are not stronger comparing with those in IL and OH.

PA is also split into three groups and all statistics are presented in Table 6. The ranges of

the ARD values based on models and the survey are relatively large in small size counties.

Both model estimates are closer to the published estimates in small size counties. Models

have better performance than the survey estimates when sample sizes are small. The

estimates of the constrained model in small size counties are closest to the published

estimates based on the range of the ARD values. However, the median ARD values from

the constrained model in both medium and large size counties are only slightly smaller

than the one in the survey. For unconstrained model, those are larger than the median ARD

value in survey. As stated before, the administrative data in PA are not strong compared

with those in IL and OH. If there was no inequality constraint, the model estimates would

be affected by undercoverage from the administrative data when borrowing information

from them.
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The posterior CVs, based on the models, are smaller than those from the survey for PA.

However, the reductions are much smaller than those in IL and OH. The loose lower

bounds based on administrative data allow estimates to have more room to move. The

median CV in the constrained model is 11.584%, smaller than the survey of 22.264% and

the one in the unconstrained model, 14.237%. As expected, the CVs are smaller when

sample sizes increase. The maximum of CVs is in small size counties as well.

5. Conclusion

NASS puts extensive research efforts on crops county estimate program aimed primarily

to improve the precision of the estimates at county level while preserving the underlying

relationships among the estimates and administrative data. Different small area estimation

models are implemented to integrate multiple sources of auxiliary information with CAPS

data. In this paper, models with inequality constraints are discussed and implemented to

address the needs and challenges of the inequality and benchmarking constraints that

NASS official statistics need to satisfy. That is, the county-level estimates of planted

acreage should be greater than or equal to the corresponding administrative data while the

total acreage of all available county-level estimates are equal to the state target.

We apply both sub-area and area-level models with inequality constraints to construct

reliable and coherent county-level planted acreage estimates. In the case study of 2014

corn based on IL, OH, and PA, we show model diagnostics and provide internal checks

between area-level models and sub-area level models. DICs indicate that the sub-area

level models are slightly better than the area-level model. However, the residual-type

internal checks are not very suitable for comparing the constrained and unconstrained

models since our focus is to provide coherent estimates close to the official estimates but

not to the survey estimates. For the model with inequality constraint, one would need to

check it against external constraints.

Now more comparisons among both sub-area level model estimates and survey

estimates are made. We pick three different states because their administrative data have

different coverage rates. The results show that the performances of the constrained model

are different among these three states. When many survey estimates are larger than the

administrative data as shown in PA, the improvements are not that significant when

comparing with IL and OH. However, the constrained model is still better than the survey

and unconstrained model in terms of the external check. Inequality checks show that

constrained model can preserve the relationships among estimates and administrative data.

But this is not necessarily the case for the unconstrained model. It is true that including

inequality constraints in some areas is unnecessary. But if we relax the inequality

constraints for those counties that meet the constraint, they may not be satisfied in the

model estimates. Not putting the constraint on the areas that are much higher than the

lower bound is incoherent from a Bayesian view. Therefore, we have to put the constraints

on all counties.

In addition, the statistics of ARD values show that the constrained model provides

estimates closer to the published values than those from the unconstrained model as well

as those from the survey, especially for IL. FSA and RMA are very significant covariates

for the estimates of planted acres. Moreover, the associated measures of uncertainty (CVs)
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from models are significantly smaller than the CVs of the survey estimates. The basic sub-

area models can reduce the CVs while borrowing strength from auxiliary information and

all counties in one district and all districts in one state. In addition, for the constrained

model, the prior information based on the lower bound information from FSA and RMA

data and the upper bound related to the state target reduce the CVs of the model-based

estimates since estimates can be drawn only in the restricted support. Therefore, the

performance of the sub-area level model with inequality constraints illustrates significant

improvement of county-level estimates of planted acres in accuracy and precision.

Major ongoing and future research related to sub-area level constrained model involves

the investigation of different auxiliary information. The auxiliary information considered

here is the key data sources of planted acres (the combination of FSA and RMA

administrative data). Future efforts will be on searching and applying other useful data

sources to strengthen the model. Remote sensing data, NASS cropland data layer (see,

Boryan et al., 2011), and weekly weather data are available at the county level. Variable

selections should be investigated for different states and commodities because weather

conditions influence the planting progress and the planted acres within different time

periods based on different states and commodities.

In addition, missing data problems are another challenge for the application of the

constrained model. In this article, case studies related to IL, OH, and PA, which do not

have missing data in 2014 corn, are provided. However, it is not always the case for other

states or other commodities. As mentioned in Subsection 2.1, CAPS is conducted for

different commodities among all eligible states. In some cases, the survey may not indicate

any planted area with respect to a particular commodity, but administrative data might

represent some positive acres or vice versa. Erciulescu et al. (2020) used the nearest

neighbor methods to impute missing data for either survey or covariates. This approach of

imputing and borrowing information from previous year or the average of several years

estimates are being explored. How to deal with missing data and provide reliable and

coherent predictions are ongoing research.
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